SHOCK-INITIATED IMPLOSION OF AN ELLIPTICAL
CAVITY AND DETONATION IN A LIQUID LAYER
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Many papers [1-9] have been devoted to the dynamical analysis of bubble implosion in a
liquid layer. Experiments have shown that an initially circular cavity is displaced or
transformed into an elliptical cavity during the implosion process due to instability, where-
upon its further contraction produces cumulative jets, This problem is important in the
study of surface wear in cavitation flow [7] and in the analysis of the impact sensitivity of
liquid explosives [1-6]. The onset of accumulation is conveniently investigated by starting
with an elliptical cavity or by displacing a circular cavity relative to the impact axis,
thereby creating an asymmetrical pressure field about the center of the cavity. In the
present article certain theoretical notions are advanced with regard to the onset of the
cumulative jet in an elliptical or displaced cavity and its influence on the ignition of liquid
explosives due to the formation of minute droplets [4] in the adiabatically heated gas in-
side the cavity. Experimental data on the jet formation time and the frequency of nitro-
glycerin detonations qualitatively support the theoretical predictions.

Consider a wuniaxial impact with velocity w, < 0 by an incompressible elliptical striker having semi-
axes A and B on a thin layer of incompressible viscous liquid, hﬁ/ A « 1, which has at its center an ellipti-
cal cavity with semiaxes ¢ and b and the same focal length as the striker, is.,

A B =g b=

We assume that the mass of the load is much greater than the liquid mass, so that the layer is com-~
pressed at a constant velocity.

For small Reynolds numbers

Re = pugd [ p, ug ~wed / h

the motion of the liquid in the thin layer is described by the set of theoretical lubrication equations, which
is written as follows in elliptical coordinates:

1 ap _ P, 1 ap 82uB 'ap

Ha~ o HF= T = ®
ou H Qu H 3 3
__‘,%.+_£,£‘E—+H’%=O, H*=_%(ch2<x-cos2{3) 2)

The variables o and g are related to the Cartesian coordinates by the familiar expressions

z = ccha cos f, y = ¢ sha sin B

The boundary conditions for these equations are represented by the conditions for adhesion to solid
surfaces
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ua= up=0, w=wy, ar z=#h
== 0 = ==
ug=0, w=0 a z=0 3)
zero-valuedness of the tangential stresses Tag = 0 at the cavity boundaries
ou, |H Ouy | H
e = (55— + 5
and equality of the normal stresses ¢y, and pressure in the gas

Gaa (Ol B) = — Do,  Gaa (21, B)= — py

1 Ou, uy aH
Caa _—p+2p‘(f1 o +I7%79?)

Assuming, however, that the derivatives with respect to @ and g are small, we replace these require-
ments with the following approximate conditions for the pressures:

D = Py at o= a,= Archa/c @)
D =p at a=oqa, = Arch4 /¢

Expressing the velocities in terms of the pressure gradient from (1) and taking (3) into account, we
find

. n(l—mh ap _ _n(@d-—m)h* ap _z
Ya=—"90@ “Pu’ BT T mE B N7 (5)

Substituting these relations into the equation of continuity (2), we obtain

a2 P
Gt g = — K, w=wm(@3-2m), K=l i (6)

We seek the solution of the Poisson equation for the pressure in the form

p=p + Ay + Bya +Cyeh2 (0 — o) cos 28 + Dych2 (¢ — ;) cos 2B
Py = — 1 Kc? (ch2a -+ cos 26) (7

Evaluating the constants Ay, By, C,, and D; from condition (4) and recognizing the indépendence of the
pressure from g at the layer boundaries, we have

(al—a)po+(a——ao)p1+ Ke? oy ch 200 — apch 201

p= o1 —dp 8 ) i
aKe? ch201— ch 209 , K¢ ch2(a—oo) 4 ch 2 (o — o)
t —a—% T3 1 oh 2 (31 — ) cos 20

— 1jsKc?(ch 20t - cos 2B)

It can be verified on the basis of the solutions (5) and (7) that the boundary conditions for Cap and
0 g are indeed already approximately satisfied at small distances, of order h?/H, from the boundary be-
cause the pressure rapidly tends to the maximum value Pygx ~ Hugy H/h2 The second derivatives 8%ug /
9p% and d%u / 9B? also turn out to be small relative to the der1vat1ves with respect to z everywhere as
B — 0. The solutlon (4), (7) not only satisfies the continuity equation, but also the mass balance relation

/2

— twy (AB — ab) = &k | [a oy, B) H (oo, B) — wa (o, B) H (ct, B)] dB

which serves as an additional condition for the more complete problem containing the second derivatives of
the velocities with respect to o and 8.

This result attests to the rigor of the resulting solution within the scope of approximate thin-layer
theory.

It is evident from the solution (7) that 8p/88 = 0 at the outer and inner boundaries of the layer, so
that for @ = ¢; and & = ¢ the tangential velocity component ug also vanishes. The contour of the cavity
changes at the first instant due to the normal component ug, which must be averaged over the layer thick-
ness
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If at the ensuing instants of time the shape of the contour is represented in the form
D=a—oa,+e(p, t), D=0
and the total time derivative of ¢ is taken, we obtain the following equation for the cavity boundary:
. 0 il
Us=Upgs +Hop 9)
Using (5) and (6) for numerical calculations, we easily reduce the problem to the solution of the

thermal-conduction equation with phase transition [10].

It is apparent from (7) and (8) that the velocity of the cavity boundary along a is greater than along
the semiminor axis:

| Ua(dtoy 0)] > | Un{ctg, 7/ 2)]

This fact has the implication that after a certain time t x the cavity is "punched in," or indented along
the semimajor axis, gradually forming a cumulative jet. If we assume approximately that Uy o t), 81 =
const up to the instant of indentation, we can readily estimate the time tx from the condition for formation
of an inflection point in the contour of the cavity boundary on the axis g8 = 0 in the form d?«/dg? = cothe.

We then obtain the following relation for estimation of the indentation time:
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*

-
8 (1 — p1/ po)sh®ao .k
—Shz“o"_‘“———al_.ao s 1:(,_—-——--l ' (10)
b= 2 __ o aobnho)*
T Po —\ " abh

It is convenient to use the following relations for the calculations in (10):

cchay =a, cshoy="5, cchoy =4, ¢sho =8
th'(a; — a,) = (@B — bA)/ (Ada — Bb), o, —ay =1In(4 + B)/(a + b)

Photographs of the implosion of an elliptical cavity in nitroglycerin at several times are shown in
Fig.1, The experimental conditions were as follows:

¢ = 5.0 mm, b = 2.65 mm, h=05 mm
p=03 p, Po =1 atm Jwo | = 2.5 m/sec

A striker in the form of a circular cylinder of radius R = 9.5 mm was used in the experiments. For
A >» agand B » b, however, the circle can be regarded approximately as an ellipse by selecting A and B
on the basis of the equal-area condition AB = Rz, because in this case the lengths of the semiaxes turn out
to be close to R.

Figure 1 gives the first photographic evidence of the flattening of the contour along the semimajor
axis at t = 25 usec, followed by indentation and the formation of a cumulative jet at t = 40 usec, and finally,
at t = 55-usec, detonation.

In the experiments the cumulative jet formation time t, was measured by frame-by-frame photography.
For the cases o, = 0.68, a; = 1.6, and @, = 0.72 and &, = 1.6 with [w, | = 1-4 m/sec the dimensionless times
tx /7, at which jet formation began turned out to be 0.19 and 0.148. Calculations according to Eq. (10) yield
values of tx/7 ; = 0.38 and 0.26. During implosion the value of Uy increases, so that the lower limit of
tx /T, can be determined by substituting the value of ay* at the instant of indentation into (10). This correc-
tion for ay* = 0.54 yields respective values of 0.18 and 0.1 for t« /7 g, i.e., satisfactory agreement with the
experimental.

In accordance with similarity theory [11], Eq, (10) does not include the Reynolds number, because
Egs. (1) and (2) do not contain the density. The dependence on Re shows up when the inertial terms are in-
cluded [12]. The experiment also indicates a weak dependence on Re,

The experimental data on the maximum jet velocity V as a function of the cavity boundary velocity U,
along the axis a at the indentation time are given in Fig. 2. The experimental conditions were as follows:
R = 9.5 mm; various values of hy = 0.25 to 1.0 mm; |w,| =1-4 m/sec; 2a = 7.5-10 mm; and 2b = 4-5 mm.

The approximate dependence V~ 1.4Ug; is inferred from Fig. 2. Using (7) and (8), we express the
velocity ratio at the indentation time and compare it with the experimental, which gives values of 1.9 and
2.0 for U,/ Uy in the cases o = 0.68, oy = 1.6, and @, = 0.72, @y = 1.89, respectively. If we assume that the
elliptical cavity retains its shape during the implosion process, at time t = tx the theory gives approximate-
ly 1.4 and 1.55. At the initial time the values of U,/ Uy, calculated according to (7) and (8) are, respectively,
1.25 and 1 .40,

We now consider the indentation of a circular cavity of radius r, displaced a distance [ relative to the
center of the striker. We map the doubly connected domain (Fig. 3) onto a canonical domain [13, 14] by
means of the fractional-linear function

_ R—uwz _"R—o(l+ry) = .
W= 26k’ =TT —eR * w=Zg+in

SRlo = R4 I — r - [(R? 4 [ — rp?)® — 4R22)": a1

which takes the points z = R and z = I + r; into the points w =+1 and w = +p,, respectively.
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We solve the problem of determining the pressure fields

K ] apP ap
p=P+p, p=—@E+P =R pgpge + g =0
P(1,0)=0, Pp,0) =K (r? — I — K* - 21X), K —-Zlml

_ R+ R (1 — o) (@*—pf e
X e

e T 20P (1 & A2~ 2hcos @) !
B =arctgn/¢, p? =&+ n?

in the series

4 2RI 1
%=R2"‘xz_y2+[T+roz‘l2_,RzJ ng
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il © n§1 "t —p ( [0] ) cos nb

= Rl — o) (@ —oR) _ Ry@—1) _
E=—o+——mrTy 0 "= GoemprE  I=lm )

g = + [21R +o (e — P — RY (1 —a) R

|, = — 20k + BALLGE T =G

y=0

AR —ol 1 (F 1) ncthen
+ Ol 4-rg—aR) Z n

n=1 o
The substitution of p (x,y) and 6 (x,y) into equations (12) yields a cumbersome expression for the de-
termination of p.

For the calculation of p and grad p at the characteristic points, however, it is convenient to use (12)
directly, taking the correspondence of points in the z and w planes into account, The pressure curve for a
liquid with a displaced cavity is plotted qualitatively in Fig. 3.

It follows from (12) that |[8p/@x|; _ . > (8p/8%)] 4 , SO that indentation and the formation of 2
cumulative jet begins from the side nearest the center of the striker. This situation is also physically
reasonable insofar as the pressure maximum occurs at the center in the absence of the cavity [15, 16].

Frame-by-frame photographs through a magnifying glass of the implosion process for a displaced
cavity are given in Fig. 4. Under the experimental conditions h = 0.5 mm, r; = 3.5 mm, R = 9.5 mm, and
1 =13 mm. '

The unidirectional indentation of the cavity at t« = 57 usec and its transport with the flow are clearly
seen in Fig. 4. Att = 68 usec the nitroglycerin ignites and detonates.

The majority of experiments on the impact sensitivity of nitroglycerin are readily explained by an
analysis after Johansson [4] of a graph of the cavity surface temperature as a function of the ratio of the
mass my of burning droplets to the mass m, of the gas in the cavity with allowance for the dependence of
m; on the mass and velocity of the cumulative jet,

Relying on the degree of compression o = h(,r%/ hs«r & 65 attained by the cavity experimentally, we
plotted the graph of Fig. 5, in which Ty is the temperature of the compressed gas with regard for cooling:
due to heating of the droplets, T, is the temperature after combustion of all the heated droplets of mass m,,
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Ty is the temperature of the liquid at the cavity boundary in this case, and Ty, (dashed curve) is the ignition
temperature calculated for a detonation delay time of 107 sec, which corresponds to the transit time of the
droplets across the cavity. The T; and T, curves were plotted on the basis of energy balance considerations,
and T, was calculated as the temperature at the boundary for the contact of two mmequally heated semi-
infinite bodies:

Ti_ comps™ttem . Qm;

Ty — com0+c+n4z‘++ ’ Ty=T.+ (mo+m)e,
T 1 Ts] T T
=T =0/ Tr=p

Here Q is the heat of reaction, v = 1.3 is the adiabatic exponent, c is the heat capacity, A is the
thermal conductivity, and the subseript 1 refers to the products of detonation. We see from Fig. 5 that for
a small number of droplets the temperature at the cavity wall is close to the temperature determined by
the thermal conductivity from an adiabatically heated gas, and for degrees of compression o £ 65 detona-
tion does not take place. If the number of droplets is relatively large, the temperature T, of the actual gas
in the cavity falls below the ignition temperature of the liquid. Consequently, the optimum segment of the
curve for the development of detonation is 0.4 € my / m; £ 1.8.

Similarity considerations [11] imply that the droplet spectrum is characterized by the complex rela-
tion

[/ doV'? Vd r
m+= h‘r+2p+F(Toa POG(; 3 p+p' i ? "ﬁ‘y Q)

in which m, is the mass of liquid droplets ranging from molecular diameters (vapor) to the instantaneous
diameter dy, Q is the angle of impact of the cumulative jet on the liquid at the cavity boundary, and o, is the
surface tension. Inasmuch as the form of the function F is unknown, we can estimate d, with the aid of the
Weber criterion poVZdo /0y 2 10, from which it follows that the experimentally observed maximum droplet
diameter for p , & 107% g/em®, ¢, = 50 dyn/cm, and V = 10* em/sec was d;€ 5 - 1074 em. Drops of this
size can become heated during the transit time across the cavity, t, ~ 2r, /V, since for r1 ~ 0.1 cm and
the thermal conductivity of nitroglycerin, n ~ 1073 cm?/sec, the heating time d}/7%n 2 t,.

The results of an experimental comparison of the frequency of detonations with a central circular
cavity (r; =2.5 mm, R = 9.5 mm, hy = 0.5 mm) and an elliptical cavity having the same injtial volume hab =
hyr,’ and @ ~ 2b are shown in Fig. 6 (curves 1 and 2, respectively). Notice the sharp increase in the detona-
tion frequency due to intensification of the cumulative effect and, hence, due to the increase in m;/ m, (see
Fig. 5).

A graph of the detonation frequency for a circular cavity of the same dimensions as in Fig. 6 versus
the displacement £ = I /R of its center for various impact velocities |w, | = 2, 2.5, and 3 m/sec is given
in Fig. 7 (curves 1, 2, and 3, respectively), An increase in ¢, which causes the velocity of the cumulative
jet to increase, at first increases the detonation frequency, but then a decrease of f with increasing ¢ is
observed, a result that is explained by the experimentally observed smearing out of the bubbles beyond the
limits of the striker.

We note in conclusion that the local heating of the liquid behind the shock front with the introduction of
the cumulative jet is small,

Assuming for the purpose of estimation that the total internal energy behind the wave front is thermal,
AT < (u+V)?/8ecy, for standard experimental conditions in which u + V € 300 m/sec and ¢y = 0.2 cal/g°K
we obtain a temperature increase of order 10°K.

We now show that viscous heating of the liquid at the zone of contact of the cavity and striker surface
also fails to produce ignition. We infer from the solution [9] pertaining to the indentation of a circular layer
of viscous liquid that the velocity gradient

on _ 3wR _‘ ylng41—¢§ _ {4B8lnB—B
raini G e R R s N

2

r.2 ro? (13)
=<l B=%, V=&
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is 2 maximum for z = 0 and z = h at the points y =1 and y = &, where (8u/8z)y=1 < (0u/8z)y = ¢ -

The maximum temperature increase without consideration of the thermal conductivity is determined

by the energy dissipation

or 6u>2 oT . 8T oh
P 5~ P(Ta‘; e 00 VTR
Taking (13) into ‘ac.count, we find
E (1 +EInE —Ex
AT = a5 ( = g (14)

E= g}LwoRZ 1 peyhe®

Inasmuch as =1 < ¢ In¢ — £ < 0, we deduce the following by majorization of the integrand of (14):

Ing

E
ArS rgms—pr "t

i.e., the viscosity causes the temperature in the liquid to increase very slowly, the increment amounting to
about 20° for characteristic experimental conditions (8 = 0.25, £ =4 - 107%),

10,
11,
12.
13.
14,

15,
16,
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